A probabilistic methodology for quantifying, diagnosing and reducing model structural and predictive errors in short term water demand forecasting
نویسندگان
چکیده
Accurate forecasts of water demand are required for real-time control of water supply systems under normal and abnormal conditions. A methodology is presented for quantifying, diagnosing and reducing model structural and predictive errors for the development of short term water demand forecasting models. The methodology (re-)emphasises the importance of posterior predictive checks of modelling assumptions in model development, and to account for inherent demand uncertainty, quantifies model performance probabilistically through evaluation of the sharpness and reliability of model predictive distributions. The methodology, when applied to forecast demand for three District Meter Areas in the UK, revealed the inappropriateness of simplistic Gaussian residual assumptions in demand forecasting. An iteratively revised, parsimonious model using a formal Bayesian likelihood function that accounts for kurtosis and heteroscedasticity in the residuals led to sharper yet reliable predictive distributions that better quantified the time varying nature of demand uncertainty across the day in water supply systems.
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort-term and Medium-term Gas Demand Load Forecasting by Neural Networks
The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...
متن کاملComparative Analysis of Short-Term Price Forecasting Models: Iran Electricity Market
As the electricity industry has changed and became more competitive, the electricity price forecasting has become more important. Investors need to estimate future prices in order to take proper strategy to maintain their market share and to maximize their profits. In the economic paradigm, this goal is pursued using econometric models. The validity of these models is judged by their forecastin...
متن کاملApplication of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets
Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Modelling and Software
دوره 66 شماره
صفحات -
تاریخ انتشار 2015